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Multifractality and percolation in the coupling space of perceptrons

M. Weigt* and A. Engel†

Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t Magdeburg, PSF 4120, 39016 Magdeburg, Germany
~Received 20 August 1996!

The coupling space of perceptrons with continuous as well as with binary weights gets partitioned into a
disordered multifractal by a set ofp5gN random input patterns. The multifractal spectrumf (a) can be
calculated analytically using the replica formalism. The storage capacity and the generalization behavior of the
perceptron are shown to be related to properties off (a) which are correctly described within the replica
symmetricAnsatz. Replica symmetry breaking is interpreted geometrically as a transition from percolating to
nonpercolating cells. The existence of empty cells gives rise to singularities in the multifractal spectrum. The
analytical results for binary couplings are corroborated by numerical studies.@S1063-651X~97!11004-2#

PACS number~s!: 87.10.1e, 02.50.Cw, 64.60.Ak
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I. INTRODUCTION

Simple networks of formal neurons with emergent pro
erties for information processing have been discussed wi
the framework of statistical mechanics for more than
years. In particular, the simplest case of a feed-forward n
ral network, the single-layer perceptron, has been analy
from various points of view and with respect to rather d
ferent properties in numerous papers. This is mainly due
the fact that the storage as well as the generalization abil
of this network can be concisely described using the ph
space formalism introduced by Gardner@1#. Part of these
investigations are summarized in recent reviews@2,3#.

Considering on the background of an ever-growing bo
of investigations aiming at more and more special aspect
this system, it seems appropriate to look for a unifyi
framework that allows us to characterize the various prop
ties in a coherent fashion. In the present paper we show
the geometrical structure of the coupling space of the perc
tron shattered by a random set of inputs offers such a po
bility. In fact, the statistical properties of the partition of th
coupling space into cells corresponding to different out
sequences can be quantitatively characterized using met
from the theory of multifractals. With the help of the replic
trick the multifractal spectrum can be calculated explicit
Many of the relevant properties of the perceptron, such as
storage capacity, the typical volume of the version space,
the generalization ability, are closely related to special pr
erties of this multifractal spectrum. As a result, the relatio
between different investigations become more transpare

The idea to characterize the perceptron by the distribu
of cells in coupling space induced by the inputs is rather o
It is already the basis of the classical determination of
storage capacity by Cover@4# and is frequently used in stud
ies of information processing in mathematical statistics a
computer science~see, e.g.,@5#!. Its qualitative appeal within
the framework of statistical mechanics was emphasized
Derridaet al. @6# who, however, seem not to have realiz
that the relevant quantities could in fact be calculated. T
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became clear only after the work of Monasson and O’Ka
@7# characterizing the distribution of internal representatio
in the reversed wedge perceptron. Meanwhile these inve
gation were extended to the case of multilayer networks
have produced several new results@8,9#. But also for the
simple perceptron this formalism offers the possibility of
systematic and coherent description clarifying several d
cate points of former investigations. In the present paper
present a detailed analysis of the perceptron from this p
of view. Some of the results were already published in@10#.

The paper is organized as follows. In Sec. II we pres
the general formalism of multifractals in its application
neural networks. Section III contains the analysis of t
spherical perceptron, and in Sec. IV the Ising perceptron
discussed. A summary is given in the final section.

II. GENERAL FORMALISM

In this paper we are going to analyze the coupling sp
of simple perceptrons. These are defined by the relation

s5sgn~J•j!5 sgnS (
i
Jij i D ~1!

betweenN input bitsj i561,i51, . . . ,N, and a single out-
put s561. We are interested in the thermodynamic lim
N→`. The coupling vectorJPRN is model-dependent: Fo
thespherical perceptronthe only condition is the normaliza
tion of this vector toAN, in the case of theIsing perceptron
it has binary componentsJi561.

We choosep5gN random independent and identical
distributed input patternsjmPRN,m51, . . . ,p. The hyper-
plane orthogonal to each of these patterns cuts the coup
space into two parts according to the two possible outp
sm. The p patterns therefore generate a random partition
the coupling space into 2p ~possibly empty! cells,

C~$sm%m51, . . . ,p!5$J;sm5 sgn~J•jm!;m% ~2!

labeled by the 2p output sequencess5$sm% ~Fig. 1!.
4552 © 1997 The American Physical Society
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55 4553MULTIFRACTALITY AND PERCOLATION IN THE . . .
The relative cell sizeP(s)5V(s)/(tV(t) gives the
probability for generating the outputs for a given input
sequencejm with a coupling vectorJ drawn at random from
a uniform distribution over the whole space of coupling
The natural scale of this quantity in the thermodynamic lim
is e522N. For the Ising perceptron this corresponds to a c
containing just a single coupling vector. It is convenient
characterize the cell sizes by thecrowding indexa(s) de-
fined by

P~s!5ea~s!. ~3!

As discussed nicely in the Derrida part of@6#, the storage and
generalization properties of the perceptron are coded in
distribution of cell sizesdefined by

f ~a!5 limN→`

1

Nlog2
log(

s
d@a2a~s!#. ~4!

To calculate this quantity within the framework of statistic
mechanics one uses the formal analogy off (a) with the
microcanonical entropy of the spin systems with Hamil-
tonian a(s). It can hence be determined from the corr
sponding free energy,

t~q!52 limN→`

1

Nlog2 K K log(s
exp„2qlog2a~s!…L L

52 limN→0

1

Nlog2 K K log(s
Pq~s!L L ~5!

via Legendre transformation with respect to the inverse te
peratureq,

f ~a!5minq@aq2t~q!#. ~6!

This procedure@10# is very similar to the so-called thermo
dynamic formalism in the theory of multifractals@11,12#
where the multifractal spectrumf (a) is introduced to char-
acterize a probability measure by the moments

FIG. 1. Symbolic representation of the random partition o
spherical coupling space forN53 andp54. The figure shows the
existence of a ‘‘mirror cell’’ corresponding to the symmetry of~1!
under the transformation (J,s)°(2J,2s).
.
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^Pq&5(
s

Pq~s!5et~q!. ~7!

In this connectiont(q) is called themass exponent. The only
new feature here is the additional average over the rand
inputss represented bŷ^•••&& in Eq. ~5!. The application
of multifractal techniques to the theory of neural networ
was initiated by Monasson and O’Kane in their study of t
distribution of internal representations of multilayer neu
networks@7#.

To perform the analysis for the perceptron we start w
the definition of the cell size

P~s!5E dm~J! )
m51

p

uS 1

AN
smJ•jmD ~8!

using the Heaviside step functionu(x). The integral measure
dm(J) ensures that the total volume is normalized to 1.

In the thermodynamic limit we expect botht and f to
become self-averaging, and we can therefore calculate
mass exponent~5! by using the replica trick introducingn
identical replicas numbereda51, . . . ,n to perform the av-
erage over the quenched patterns. Moreover, we introdu
second replica indexa51, . . . ,q in order to represent the
qth power ofP in Eq. ~5! assuming as usual that the resu
can be meaningfully continued to real values ofq @13#. In-
troducing integral representations for the Heaviside funct
we arrive at a replicated partition function given by

^^Zn&&5K K (
$sm

a %
E )

a,a
dm~Ja,a!

3 )
m,a,a

uS sm
a 1

AN(
j
Jj
a,aj j

mD L D
5K K (

$sm
a %
E )

a,a
dm~Ja,a!E

0

`

)
m,a,a

dlm
a,a

A2p

3E )
m,a,a

dxm
a,a

A2p
expH i (

m,a,a
xm
a,aS lm

aa

2
1

AN
sm
a(

i
Ji
aaj i

mD J L L . ~9!

The average over the quenched patternsjm can now be easily
done. To disentangle the remaining integrals we introd
the order parameters

Qab
ab5

1

N(
i
Ji
aaJi

bb ~10!

as the overlap of two coupling vectors, and their conjuga
Q̂ab

ab . The spherical as well as the Ising constraints rest
the self-overlapQaa

aa to 1. The other values of the orde
parameter matrices are obviously invariant under simu
neous commutations ofa↔b anda↔b. We then find



e

ffi-
r
pu
l

e
to

tri
to

-
d
e

t
fo
ue

on

ly

ve

ace
he

d
e
ters
se

y

l
us

e

um

of

4554 55M. WEIGT AND A. ENGEL
^^Zn&&5E )
~a,a!,~b,b!

dQa,b
a,bdQ̂a,b

a,b

2p/N

3expHNF2 (
~a,a!,~b,b!

Qa,b
a,bQ̂a,b

a,b1g logG0~Qa,b
a,b!

1 logG1~Q̂a,b
a,b!G J ~11!

with

G0~Qab
ab!5E

0

`

)
a,a

dla,a

A2p
E )

a,a

dxa,a

A2p
(
$sa%

3expH i(
a,a

xaalaasa2
1

2 (
a,b,a,b

xaaxbbQab
abJ ,

G1~Q̂a,b
a,b!5F E )

a,a
dm~Jaa!

3expH (
~a,a!,~b,b!

Q̂a,b
a,b(

i
Ji
aaJi

bbJ G1/N.
~12!

(a,a),(b,b) denotes eithera,b or a5b,a,b and counts
the elements above the main diagonal in the order param
matrices. The integrals over the order parameters in Eq.~11!
can be done using the saddle-point method.

To find the correct saddle point is in general a very di
cult task. A simpleAnsatzis the replica symmetric one. Fo
the present situation it is important to note that the out
sequences$sm

a % carry only one replica index. The typica
overlap of two coupling vectors within one cell~same output
sequence$sm

a %) will hence in general be different from th
typical overlap between two coupling vectors belonging
different cells ~different output sequence$sm

a %). Therefore
we have to introduce already within the replica symme
~RS! approximation two different overlap values in order
determine the saddle point of Eq.~11! ~see@7#!:

Qab
ab5H 1 if ~a,a!5~b,b!

Q1 if a5b,aÞb

Q0 if aÞb.

~13!

In accordance with the above discussion,Q1 then denotes the
typical overlapwithin one cell, whereasQ0 denotes the over
lap between different cells. The structure of the conjugate
order parameter is analogous, having nonunite diagonal
mentsQ̂2.

Plugging this RSAnsatz into Eq. ~9! one realizes tha
Q05Q̂050 always solves the saddle-point equations
Q0 andQ̂0. This has an obvious physical interpretation: D
to the symmetry of Eq.~1! and therefore of the crowding
indexa(s) under the transformation (J,s)↔(2J,2s), ev-
ery cell has a ‘‘mirror cell’’ of the same size and shape
the ‘‘opposite side’’ of the coupling space~see Fig. 1!.
Q050 simply reflects this symmetry. It can be explicit
broken by introducing a threshold in Eq.~1!. Note that
Q05Q̂050 means formally that the quenched average o
the input patterns can be performed as anannealedaverage.
ter
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III. THE SPHERICAL PERCEPTRON

A. Replica symmetry

In the case of the spherical perceptron the coupling sp
is restricted to theN-dimensional hypersphere defined by t
global spherical constraintJ25N. In the large-N limit this
gives rise to the integral measure

dm~J!5)
i

dJi

A2pe
d~N2J2!. ~14!

Using the replica symmetricAnsatz~13! with Q05Q̂050
leads to the mass exponent

t~q!52
1

log2
extrQ1 ,Q̂1,2

Fq2 ~Q̂221!1
q~q21!

2
Q̂1Q1

2
1

2
log@Q̂21~q21!Q̂1#2

q21

2
log~Q̂22Q̂1!

1g log2E DtHqSA Q1

12Q1
t D G , ~15!

where we introduced the abbreviations Dt
5dtexp(2t2/2)/A2p for the Gaussian measure an
H(x)5*x

`Dt. As is well known for spherical models, th
saddle-point equations for the conjugated order parame
Q̂ab

ab can be solved explicitly, which in the present ca
yields

t~q!52
1

log2
extrQ1

F12log@11~q21!Q1#

1
q21

2
log~12Q1!1g log2E DtHqSA Q1

12Q1
t D G .
~16!

The order parameterQ1 is self-consistently determined b
the saddle-point equation

Q1

11~q21!Q1

5
g

2p

E DtHq22SA Q1

12Q1
t D expH 2

Q1

12Q1
t2J

E DtHqSA Q1

12Q1
t D .

~17!

The multifractal spectrumf (a) resulting from a numerica
solution of these equations is shown in Fig. 2 for vario
loadingsg.

For small values ofg we find the typical bell-shaped form
of f (a). The zerosamin(g) specify the RS estimate of th
largest cell occurring with nonzero probability@14#.

The most frequent cell size corresponds to the maxim
of f (a) and is therefore given bya0(g)5 argmax„f (a)….
For largeN, cells of this size dominate the total number
cells exponentially, i.e., a randomly chosenoutput sequence
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55 4555MULTIFRACTALITY AND PERCOLATION IN THE . . .
s will be found with probability 1 in a cell of sizea0. Hence
ea0(g) @cf. Eq. ~3!# is the typical volume of couplings realiz-
ing p5gN random input-output mappings as determine
within a standard Gardner calculation@1#. This volume be-
comes zero, i.e.,a0(g)→`, for g→2 ~cf. Fig. 1! in accor-
dance with the Gardner result@1#.

In addition we can infer fromf „a0(g)… the typical num-
ber of cells as first calculated with the help of geometrica
methods by Cover@4#. For small loading ratiosg we find
f (a0)5g, i.e., all 2gN possible cells~or almost all of them!
do indeed occur. The storage problem for theseg values is
then solvable with probability 1. Forg.2 we have
f (a0)5 f (`),g implying that only an exponentially small
fraction of all possible cells can be realized. It is then typ
cally impossible to find couplings realizing a randomly gen
erated set of input-output mappings. The multifractal anal
sis of the coupling space hence nicely reconciles th
previously complementary approaches to the storage pro
lem of the perceptron by Cover and Gardner, respective
From both the analysis ofa0(g) and of f „a0(g)… one finds
the well-known resultac52.

FIG. 2. Multifractal spectrumf (a) characterizing the cell struc-
ture of the coupling space of the spherical perceptron for vario
values of the loading parameterg50.2,0.35,0.5,1.0,2.0~from left to
right!. The curves end at their maxima because of the divergence
the mass exponentt(q) for negativeq ~corresponding to the dotted
parts!. Replica symmetry holds between the diamonds and th
maxima.
l

-
-
-
e
b-
y.

Although the cells with volumea0 are the most frequen
ones, their joint contribution to the totalvolumeof the sphere
is negligible. Since

15(
s

P~s!5E
0

`

daexp$N@ f ~a!2a#% ~18!

a saddle-point argument reveals that the cells with s
a1(g) defined byf 8(a1)51 dominate the volume. Cells o
larger size are too rare, those more frequent are too sma
compete. Consequently a randomly chosencoupling vector
J will belong with probability 1 to a cell of sizea1. By the
definition ~2! of the cells all other couplings of this cell wil
give the same output for all patternsjm. Thereforeea1(g) is
nothing but the volume of the version space of a teac
perceptron chosen at random from a uniform probability d
tribution on the sphere of possible perceptrons. From it@or
equivalently fromQ1(q51,g)] one can determine the gen
eralization error as a function of the training set sizeg re-
producing the results of@15#.

The main properties of the perceptron can hence be
rived from the multifractal spectrumf (a) of the cell size
distribution in the coupling space. Below we show that t
RS Ansatztogether with the assumptionQ050 gives valid
results for 0<q<1.

There is also a close formal analogy between the calc
tion of f (a) and the standard Gardner approach withq play-
ing the role of the replica number in the Gardner calculati
Since from Eq.~6! we haveq5d f /da, the calculation of
a0 is related toq→0, whereas the generalization proble
concentrating ona1 corresponds toq→1. These limits of
the replica number in Gardner calculations are well known
correspond to the storage and generalization problems
spectively@16#.

B. Longitudinal instability of replica symmetry

The results of the preceding paragraph were obtai
within the RS approximation and usingQ050. The discus-
sion of their validity requires a careful determination of t
stability of theseAnsätze for the different values ofq. We
first discuss the stability with respect to longitudinal fluctu
tions in Q0, i.e., we search for a RS saddle-point soluti
where the symmetry giving rise toQ050 is spontaneously
broken. The full replica symmetric saddle-point equatio
are of the form

s

of

e

05
Q0

@11~q21!Q12Q0#
2 2

g

2p~12Q1!
E DyS E Dt~H1

q212H2
q21!expH 2

~AQ0y1AQ12Q0t !
2

2~12Q1!
J

E Dt~H1
q 1H2

q !
D 2

, ~19!
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05
Q12Q0

11~q21!Q12Q0
1

Q0~12Q1!

@11~q21!Q12Q0#
2 2

g

2pE Dy
E Dt~H1

q221H2
q22!expH 2

~AQ0y1AQ12Q0t !
2

~12Q1!
J

E Dt~H1
q 1H2

q !

, ~20!
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H65HS 6
AQ0y1AQ12Q0t

A12Q1
D . ~21!

Linearizing these equations inQ0 we find that new solutions
Q0.0 bifurcate continuously fromQ050 at

q6516
Ag

Q1~g!
. ~22!

From Eqs.~22! and~17! the two transition pointsq6(g) for
positive and negative inverse temperatureq can be deter-
mined explicitly. In the rangeq2,q,q1 , there exists only
the solution withQ050, which becomes unstable at the tra
sition points.

C. Divergence of negative moments

The expression~15! for the replica symmetric mass expo
nent has been calculated for positive integerq. The continu-
ation to negative values ofq gives rise to divergences at

d5
11~q21!Q1

12Q1
50 ~23!

as can be realized from an asymptotic analysis of the i
grand in the last term of Eq.~15!. Because ofH(t)
}exp(2t2/2)/A2pt for large t we get an exponential part o
this term proportional to exp(2dt2/2) and the whole integra
converges only ifd.0. For d→0 we therefore find thatt
tends to2`. The global minimum of Eq.~15! with respect
toQ1 is hence no longer given by the saddle point descri
by Eqs.~16! and ~17!, which realizes only a local minimum
with respect toQ1. There is hence adiscontinuouslongitu-
dinal transition atq50 with Q1 jumping from the solution
of Eq. ~17! to 1/(12q). As a consequence,f (a) is not de-
fined for f 8(a),0 and the curves forf (a) as obtained
above by using the saddle-point equations are reliable o
for q>0, i.e., for positive slope. The parts corresponding
q,0 are dotted in Fig. 2.

It is tempting to speculate that the observed diverge
for negative q is due to the existence ofempty cells
V(s)50 in Eq. ~5!. In the theory of neural networks~and
more generally of classifier systems! the possibility of output
sequences impossible to implement by the system is rel
to the Vapnik-Chervonenkis~VC! dimensiondVC of the class
of networks under consideration@18,19#. It has been notori-
ously difficult to determine the VC dimension of a neur
network from statistical mechanics calculations since
definition of the VC dimension involves asupremumover all
possible pattern sets rather than theaveragefeaturing in Eq.
~5!. The above analysis of the instability with respect
-

e-

d

ly
o

e

ed

l
e

Q1 ,Q̂1 for q,0 reveals that the multifractal formalism i
the present form is unfortunately also unable to determ
dVC since the divergence of negative moments ofV(s) oc-
curs for all values ofg. The pattern average performed
Eq. ~5! does not allow one to decide whether the observ
divergence oft is due to the fact thatg.dVC /N or is due to
exceptional pattern realizations that give rise to empty c
also if g,dVC /N @20#. Note in this connection also tha
similar divergences in the theory of multifractals@21# are
related to cells with volume that is nonzero but decreases
N→` quickerthan exponentially. For the perceptron, on t
other hand, it is known that empty cells exist for all values
N @4#.

D. Transversal instability of replica symmetry and percolation

In addition to the longitudinal instabilities discussed in t
preceding paragraph there is the possibility of a transve
instability invalidating the RSAnsatz@22# which we study
now. The replica symmetricAnsatz~13! is formally similar
to a one-step replica symmetry broken solution~1RSB! of
standard replica calculations@17#. It is advantageous to us
the results and the notation given in@23#. After some lengthy
calculations we arrive at four different eigenvalues cor
sponding to the replicon modes denoted by~0,1,1!, ~1,2,2!,
~0,2,2!, and~0,2,1! in @23#. We give here only the result fo
the ~0,1,1! mode which is found to be the first to becom
unstable,

l~0,1,1!5
12~1/g!~q21!2Q1

2

@11~q21!Q1#
2 . ~24!

It vanishes exactly at the two points calculated in Eq.~22!
describing the instability with respect to longitudinalQ0
fluctuations. Similar to the SK model@24# in zero field the
longitudinal and transversal instability of the RS soluti
occurs hence for the same temperature 1/q @25#. Due to the
divergences forq,0 only q1 is of further relevance. The
AT points are therefore determined byq1(g), which are
marked in Fig. 2 by the diamonds.

The eigenvaluel(0,1,1) describes fluctuations in that pa
of the overlap matrix having onlyQ0 entries, i.e., corre-
sponding to the overlaps between different cells. This is r
sonable since for the spherical perceptron the cells th
selves are known to be convex. No RSB is hence expecte
be necessary to describe the structure of asinglecell @1#. The
instability to RSB found above concerns the distribution
overlaps between different cells which must now be char
terized by two parameters. The smaller one remains equ
zero reflecting still the symmetry of Eq.~1!. The other one is
larger than zero and describes the formation of clusters m
of cells of identical size.
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55 4557MULTIFRACTALITY AND PERCOLATION IN THE . . .
In order to interpret the RSB transition in physical term
we allude again to the analogy with the SK model. There
analogous instability corresponds to broken ergodicity, i
to the fact that not all parts of the phase space can be rea
from a given initial condition. In the perceptron proble
single spin flips in the output sequences are equivalent to
hops between neighboring cells in the coupling space.
breakdown ofQ050 at q1 hence signals that starting in
cell of a size corresponding toq1 , i.e., starting with a spin
configurations with energya(s) corresponding toq1 it
becomes impossible to reach the ‘‘mirror cell’’ by hops u
ing only cells of the same or larger sizes, i.e., via spin c
figurationss with the same or smaller energy. Since t
relative number of larger cells is exponentially small we c
interpret the observed breaking of RS as apercolation tran-
sition in the infinite dimensional space of couplings. F
0,q,q1 the cells of sizeea(q) percolate in coupling spac
in the sense that they can all be reached from each othe
entering only cells of the same size. Forq.q1 this is no
longer true and the cells form clusters isolated from e
other.

IV. THE ISING PERCEPTRON

A. Replica symmetry

In the Ising perceptron the entries of the coupling vec
are restricted toJi561,i51, . . . ,N, the full coupling space
is hence given by the 2N corners of anN-dimensional hyper-
cube. The cells are therefore represented by discrete
their probability measure is given by the number of eleme
multiplied with 22N. Thus, the coupling space measure is
be modified according to

E dm~J!°22N(
J
. ~25!

Following the general procedure described in the Sec. II
arrive at

t~q!5q1 limn→0

1

nlog2
extr~Qab

ab!,~Q̂ab
ab!S 12 (

~aa!Þ~bb!
Q̂ab

abQab
ab

2 logG1„~Q̂ab
ab!…2g logG0„~Qab

ab!…D ~26!
e
.,
ed

e

-
-

n

by

h

r

ts,
ts

e

with

G0„~Qab
ab!…5(

sa
E
0

`

)
aa

dlaaE )
aa

dxaa

2p

3expH i(
aa

xaalaasa2
1

2 (
abab

xaaxbbQab
abJ
~27!

and

G1„~Q̂ab
ab!…5(

Jaa
expH 12 (

~aa!Þ~bb!
Q̂ab

abJaaJbbJ . ~28!

Contrary to the spherical case, the conjugated parame
Q̂ab cannot be eliminated analytically. The replica symm
ric expressions are obtained by introducing the saddle-p
structure ~13! for both the overlaps and their conjugate
Starting again with the solutionQ05Q̂050 we get for the
mass exponent

t~q!5
1

log2
extrQ1 ,Q̂1

FqQ̂1

2
@11~q21!Q1#

2 logE Dtcoshq~AQ̂1t !

2g log 2E DtHqSA Q1

12Q1
t D G . ~29!

The extremization in this equation is again somewhat su
@9#. There are two, qualitatively different possibilities.~i!
The first one is given byQ151 andQ̂15` and hence lies a
the boundary of allowed values of the saddle-point para
eters. It can be studied analytically and leads
t(q)5q21. The corresponding multifractal spectrum
given by a single pointf5a51. No dependence ong re-
mains. The valuea51 describes cells containing just
single coupling vector in accordance withQ151. Their total
number is of ordere2 f52N, and hence they form a macro
scopic part of the cell number as well as of the total coupl
space volume. Since the total number of cells is 2gN, this
solution can exist forg>1 only. ~ii ! The second solution
solves the saddle-point equations
Q15

E Dtcoshq22~AQ̂1t !sinh
2~AQ̂1t !

E Dtcoshq~AQ̂1t !

,

Q̂15
g

2p~12Q1!

E dtexpH 2
~11Q1!t

2

2~12Q1!
JHq22SA Q1

12Q1
t D

E DtHqSA Q1

12Q1
t D . ~30!
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It lies inside the intervals for the parameters and is to
determined numerically. It exists for allq if g<1 and dis-
appears for fixedg.1 at a sufficiently negativeq.

A numerical comparison of the corresponding loc
maxima or minima oft leads to the following scenario: For
g,1 solution ~ii ! always gives the global extremum. Fo
g.1 this is only the case forq.qdisc(g). At this threshold
the extremum~i! becomes the global one by a discontinuou
transition. The occurrence of such transitions is the trad
mark of neural networks with Ising couplings@26,9#. The
smooth curves off (a) then terminate and are completed b
a single point at~1,1! ~see Fig. 3!. Hence forg.1 the spec-
trum is nonzero only in a certain regionamin,a,amax,1
and at the isolated point ata51.

The general form of the multifractal spectrum resembl
that of the spherical perceptron. In fact, forg&0.25 the
curves almost coincide. This was to be expected because
cells are still relatively large and do not ‘‘sense’’ the dis
creteness of the Ising couplings. For largerg, however, it
becomes decisive that in the Ising perceptron the cell siz
are restricted toa<1. All valuesa.1 correspond to empty
cells.

The storage capacity is therefore not given bya0→` as
in the case of the spherical perceptron but is determined
a0(g)5 argmax„f (a,g)…51. As can be seen from Fig. 3,
this holds forgc50.833 the well known result obtained in
@26#. In fact,a0(g)51 is equivalent to the zero-entropy con
dition frequently used for neural networks with discrete co
plings. Let us define the entropy

s5 limN→`

1

N
^^ logN&&, ~31!

whereN denotes the number of couplings that can impl
ment a mapping betweengN random inputsand outputs.

FIG. 3. Multifractal spectrumf (a) describing the cell structure
of the coupling space of the Ising perceptron with loading rati
g50.2,0.4,0.833,1.245,1.4~from left to right!. The curves end at
their maxima due to the divergence of the mass exponentt(q) for
negativeq. Between the diamonds and the maxima RS holds. T
triangle denotes the discontinuous transition toQ151. The isolated
point ~1,1! is marked by the square.
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ThereforeN is related to the size of the typical cell and fro
Eqs. ~8! and ~25! one findss5(12a0)log2. Hences50 is
equivalent toa051.

Similarly the generalization behavior of the Ising perce
tron differs from that of the spherical one. There is a we
known discontinuous transition to perfect generalizationat
gg51.245 @27#. It shows up in the multifractal spectrum
f (a,g) as the point wherea1(gg)51 with a1 again defined
by f 8(a1)51. At this value of the loading parameter th
discontinuous transition toQ151 occurs and the coupling
space becomes dominated by cells with exactly one elem
This is the intuitive reason for the transition to perfect ge
eralization; there is only one coupling vector left that pe
forms perfectly on the training set: the teacher herself.

B. Continuous replica symmetry breaking and percolation

Similar to Sec. II, we have analyzed the longitudinal a
transversal stability of the RS solution withQ05Q̂050 by
calculating the relevant eigenvalues of the fluctuation mat
The results are qualitatively the same. Using the lineariza
of the complete replica symmetric saddle point equation
Q05Q̂050 we find again a new solution withQ0 ,Q̂0.0
emerging continuously at the two valuesq6 satisfying

Ag56Q̂1~q621!~12Q1!@11~q621!Q1#. ~32!

The analysis of the transversal fluctuations reveals that
first mode to become unstable is again the replicon m
~0,1,1!. Due to the existence of two order parameter matri
the analysis is now more involved. Following the argume
tation in @1#, we first determine the eigenvalues in the tw
building blocks of the fluctuation matrix and find for th
~0,1,1! eigenvalue of the overlap fluctuations

l~Q!~0,1,1!52g21~q21!2~12Q1!
2Q̂1

2 , ~33!

and for the conjugated matrix

l~Q̂!~0,1,1!52@11~q21!Q1#
2. ~34!

The total fluctuation matrix for this replicon mode is the
given by

S l~Q!~0,1,1! 1

1 l~Q̂!~0,1,1!
D ~35!

and the breakdown of RS is signaled by a change of the
of its determinant. From Eqs.~33!, ~34!, and ~35! we find
that the local transversal instability occurs again at the sa
valuesq6(g) given by Eq.~32!, for which the RS solution
with Q05Q̂050 becomes longitudinally unstable.

In Fig. 3 the breakdown of the local stability of RS
again marked by the diamonds. Inside the inter
„a(q1),a0…, RS is locally stable. As discussed already f
the spherical case, in this region the solutions are symme
under the reflection symmetry of the original system~1! and
the cells of every fixed crowding indexaP„a(q1),a0… per-
colate in coupling space. Outside this interval the overla
between different cells must again be described by two~or
more! order parameters. The smaller one vanishes, and

s

e



e
ll
ini

h
t t
s
o

nl
ca

e

-

ha

S
c
in
h

p
c

ep

e
. A

nt

For
l-
.
n-
ed

ng
At

the
lso
m

ith

and
nu-

n-

all
f
n.
is-
ed
hey
use

ter-
e
n a
10

r of

-to-
-
-
ults
rst
ical

55 4559MULTIFRACTALITY AND PERCOLATION IN THE . . .
reflects the symmetry of Eq.~1!. The other one takes a valu
in (0,Q1) with Q1 being the overlap within one single ce
and describes the size of the connected clusters rema
below the percolation threshold.

C. Divergence of negative moments

For q,0 there occurs an analogous divergence oft for
small d defined by Eq.~23! as in the spherical case, whic
gives rise to a similar discontinuous transition with respec
Q1. As a result, thef (a) curves do not continue into region
of negative slope forany g. It is hence again impossible t
infer the ~still unknown @28#! VC dimension of the Ising
perceptron from the multifractal analysis. Note that the o
value that could in principle be obtained from a statisti
mechanics analysis is what is called thetypical VC dimen-
sion that gives the maximal pattern set size for whichtypi-
cally no empty cells occur@29#. Numerical investigations
suggest that this value is equal toN/2 @30,29#.

D. Discontinuous replica symmetry breaking

Contrary to the case of the spherical perceptron, ther
an inconsistency even within the region oflocal stability of
the RSAnsatz. For 0.833,g,1.245 the multifractal spec
trum f (a) continues to valuesa.1 corresponding to the
unphysical region of cells having less than one but more t
zero elements.

We therefore expect a discontinuous transition to R
already in the region of local stability of RS. Due to the fa
that a single cell is not necessarily connected for the Is
perceptron, this transition is likely to take place inside t
blocks describing the overlapswithin a cell. The global re-
flection symmetry remains unbroken and therefore the ty
cal overlaps between two cells stay zero. We can hence
culate the annealed average^^Z&& of the partition function.
After a standard calculation we find the following one-st
RSB ~1RSB! result for the mass exponent:

t1RSB~q!5
1

log2
extrm,Q1 ,Q2 ,Q̂1 ,Q̂2H 12 q~q2m!Q1Q̂1

1
q

2
Q̂2@11~m21!Q2#2 logE Dz1

3F E Dz2cosh
m~AQ̂1z11AQ̂12Q̂2z2!Gq/m

2g log2E Dt1E Dt2H
m

3S AQ1t11AQ22Q1

A12Q2
D G q/m, ~36!

whereQ2 is the order parameter inside them3m diagonal
blocks of the overlap matrix andQ1 is the entry outside thes
blocks. Q̂1,2 are the corresponding conjugated quantities
similar expression was obtained in@9#.

Guided by previous experience@26#, we look for an ex-
tremum withQ251 andQ̂25`. One then finds
ng

o

y
l

is

n

B
t
g
e

i-
al-

t1RSB~q!5 extrmFqS 12
1

mD1tRSS qmD G , ~37!

where we have used the RS mass exponenttRS from Eq.
~29!. The saddle-point equation with respect tom is then
given by

15
dtRS

dq S qmD5aRS. ~38!

Comparing the values oftRS and t1RSB, one finds that for
g.0.833 there is indeed adiscontinuous transitionto this
1RSB solution whena gets larger than 1. Crossing this poi
t(q) becomes proportional toq, implying that f (a) stops at
a51. This removes the inconsistency noted above.
0.833,g,1.245 the cells contributing most to the total vo
ume ~the a1 cells! contain exponentially many couplings
The majority of cells, however, comprise only subexpone
tially many couplings. This situation is correctly describ
by the 1RSB solution withQ1,1 characterizing thea1 cells
andQ251 characterizing the typical ones. With increasi
g, the a1 cells shrink and the typical cells disappear.
g51.245, we havea151 and correspondinglyQ151. At
this pointt is again given by theminimumin Eq. ~26! since
q.1. Therefore the 1RSB solution has to be rejected and
discontinuous transition disappears. The 1RSB solution a
becomes intrinsically inconsistent since there is ‘‘no roo
left’’ for a Q2 with Q1,Q2<1. For g.1.245 the 1RSB
solution finds its natural continuation in the RS solution w
Q151, which gives rise to the gap in thef (a) spectrum as
discussed in the first paragraph of this section.

E. Numerical results

For the Ising perceptron the phase space is discrete
the analytical results discussed above can be checked by
merical enumerations over all the possible 2N coupling vec-
tors Ji561. Although these techniques are naturally co
fined to rather low values ofN, it is interesting to see
whether the asymptotic behavior already shows up in sm
samples. We have performed enumerations for values oN
between 10 and 30 according to the following prescriptio
We first generatep patterns at random from a Gaussian d
tribution with zero mean and unit variance. As in relat
studies @31,6# we choose Gaussian patterns because t
show less pronounced finite size fluctuations. Next we
theGRAY code@32# to run through all coupling vectorsJ and
determine the corresponding output strings. Finally we de
mine the size of the cells by counting the multiplicity of th
occurring outputs and compile a histogram of cell sizes i
double logarithmic scale. The results are averaged over4

~for N510) to 10 ~for N530) realizations of the random
patterns. Although the main reason for the lesser numbe
realizations used for largeN was limited computer time, it
became quite clear in the simulations that the sample
sample fluctuations for largeN are due to self-averaging sub
stantially smaller than for smallN. The results of the enu
merations together with the corresponding analytical res
already displayed in Fig. 3 are shown in Fig. 4. It is at fi
surprising that the histograms lie always above the analyt
curves. However, for smallg we have
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2sgN5E
0

1

da2Nf~a!.2Nf~a0!E
0

1

daexpSN2log2 f 9~a0!~a2a0!
2D.2Nf~a0!A 2p

Nlog2u f 9~a0!u
~39!

FIG. 4. Exact enumeration results for the multifractal spectrumf (a) of the Ising perceptron forp56,N530; p512,N530; and
p520,N524 ~from left to right!. The dotted lines are the analytical results of Fig. 3 forg50.2, 0.4, and 0.833, respectively. The inset sho
a finite size scaling forf (a0) atg50.5. The diamonds are enumeration results whereas the line is given by Eq.~40! with u f 9(a0)u estimated
from the numerical data. The rms fluctuations of the enumeration results are smaller than the symbol size. The asymptotic
f (a0) is 0.5.
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giving rise to

f ~a0!5g1
1

2N
log

Nlog2u f 9~a0!u
2p

. ~40!

Hence the maximum of the histograms for finiteN converges
to the asymptotic valuef (a0)5g for N→` from above. In
fact, in the inset of Fig. 4 we have compared the finite s
scaling predicted by Eq.~40! with enumeration results fo
f (a0) at g50.5. The agreement is very good.

V. SUMMARY

In this paper, we have presented a multifractal analysi
the coupling space of the single-layer perceptron with c
tinuous and Ising couplings. This has been done by cha
terizing the random partition of the coupling space into d
ferent cells corresponding to different output sequences
the same fixed set of random input vectors. This picture
lowed us to refine the standard Gardner analysis and, m
over, to unify the different approaches to the storage prob
of Gardner@1# and Cover@4# and the generalization problem
within one consistent picture. The different questions are
lated to different fractal subsets of the coupling space: T
cells with the most frequent size describe the storage p
lem, those dominating the total volume are related to
generalization ability for a randomly drawn teacher.

We have shown that the storage and the generaliza
problem can always be analyzed within the region wh
replica symmetry is locally stable. Moreover we have de
e

of
-
c-
-
n
l-
re-
m

-
e
b-
e

on
e
-

onstrated that the most important part of the multifrac
spectrum can be determined within an annealed calcula
with respect to the input pattern distribution. This is not on
an important technical advantage but may also smooth
way for mathematically rigorous investigations of the
problems.

Replica symmetry must be broken if one aims at desc
ing comparatively large and therefore rare cells. Despite
symmetry of the coupling space under point reflection at
origin, these cells no longer percolate in the sense that
impossible to reach the corresponding ‘‘mirror’’ cell withou
entering cells of smaller size. This clustering of large cells
described by the higher order parameters of a solution w
broken replica symmetry.

Finally we note that the central procedure in our calcu
tions is the determination ofpositive integermomentsVq of
the distribution of phase space volumes and the continua
of the result to realq @13#. In doing so we encountered d
vergences for allq,0. These are probably due to the exi
tence of empty cellsV50. We therefore hope that an appr
priately modified formalism describing the metastable st
that occurs forq,0 might be able to yield also results fo
the VC dimension of neural networks.
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