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Multifractality and percolation in the coupling space of perceptrons
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The coupling space of perceptrons with continuous as well as with binary weights gets partitioned into a
disordered multifractal by a set gf=vyN random input patterns. The multifractal spectrdifar) can be
calculated analytically using the replica formalism. The storage capacity and the generalization behavior of the
perceptron are shown to be related to properties(of) which are correctly described within the replica
symmetricAnsatz Replica symmetry breaking is interpreted geometrically as a transition from percolating to
nonpercolating cells. The existence of empty cells gives rise to singularities in the multifractal spectrum. The
analytical results for binary couplings are corroborated by numerical st&&663-651X97)11004-2

PACS numbg(s): 87.10+e, 02.50.Cw, 64.60.Ak

[. INTRODUCTION became clear only after the work of Monasson and O’Kane
[7] characterizing the distribution of internal representations
Simple networks of formal neurons with emergent prop-in the reversed wedge perceptron. Meanwhile these investi-
erties for information processing have been discussed withigation were extended to the case of multilayer networks and
the framework of statistical mechanics for more than 10have produced several new resul&9]. But also for the
years. In particular, the simplest case of a feed-forward neusimple perceptron this formalism offers the possibility of a
ral network, the single-layer perceptron, has been analyze8ystematic and coherent description clarifying several deli-
from various points of view and with respect to rather dif- cate points of former investigations. In the present paper we
ferent properties in numerous papers. This is mainly due t®resent a detailed analysis of the perceptron from this point
the fact that the storage as well as the generalization abilitiedf view. Some of the results were already publishe{lli.
of this network can be concisely described using the phase The paper is organized as follows. In Sec. Il we present
space formalism introduced by Gardridd. Part of these the general formalism of multifractals in its application to
investigations are summarized in recent reviémg]_ neural networks. Section Il contains the analysis of the
Considering on the background of an ever-growing bodyspherical perceptron, and in Sec. IV the Ising perceptron is
of investigations aiming at more and more special aspects dfiscussed. A summary is given in the final section.
this system, it seems appropriate to look for a unifying
framework that allows us to characterize the various proper-
ties in a coherent fashion. In the present paper we show that

the geometrical structure of the coupling space of the percep- |n this paper we are going to analyze the coupling space

tron shattered by a random set of inputs offers such a possgf simple perceptrons. These are defined by the relation
bility. In fact, the statistical properties of the partition of the

coupling space into cells corresponding to different output

sequences can be quantitatively characterized using methods _ e — £

from the theory of multifractals. With the help of the replica o=sgnJ-§) sgr( Z J,g,) @

trick the multifractal spectrum can be calculated explicitly.

Many of the relevant properties of the perceptron, such as the , ) ) ,

storage capacity, the typical volume of the version space, angetweenN input bits§;==1,i=1, ... N, and a single out-

the generalization ability, are closely related to special propPUt ¢=*1. We are interested N the thermodynamic limit

erties of this multifractal spectrum. As a result, the relationg\— % The coupling vectod e R™ is m(_)del_-dependent: _For

between different investigations become more transparent, (€ spherical perceptronhe only condition is the normaliza-
The idea to characterize the perceptron by the distributiofion of this vector toyN, in the case of thésing perceptron

of cells in coupling space induced by the inputs is rather oldit has binary component}=+1.

It is already the basis of the classical determination of the We choosep=yN random independent and identically

storage capacity by Cové4] and is frequently used in stud- distributed input patterng“e R, u=1, ... p. The hyper-

ies of information processing in mathematical statistics andPlane orthogonal to each of these patterns cuts the coupling

computer sciencésee, e.g[5)). Its qualitative appeal within SPace into two parts according to the two possible outputs

the framework of statistical mechanics was emphasized by*- The p patterns therefore generate a random partition of

Derrida et al. [6] who, however, seem not to have realizedthe coupling space intoP2(possibly empty cells,

that the relevant quantities could in fact be calculated. This

Il. GENERAL FORMALISM

CH{o*}u=1,.. p)={Jio"=sgrJ-&)Vu} (2

*Electronic address: martin.weigt@physik.uni-magdeburg.de
Electronic address: andreas.engel@physik.uni-magdeburg.de labeled by the 2 output sequences={o*} (Fig. 1).
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(PH=> PYo)=e"". @)

In this connectionr(q) is called themass exponenThe only
new feature here is the additional average over the random
inputs o represented by(- - -)) in Eq. (5). The application
of multifractal techniques to the theory of neural networks
was initiated by Monasson and O’Kane in their study of the
distribution of internal representations of multilayer neural
networks[7].

To perform the analysis for the perceptron we start with
the definition of the cell size

P 1
P(a)zf d,u(J)M]_:[l ﬁ(ma“J-8> (8)

FIG. 1. Symbolic representation of the random partition of ausing the Heaviside step functi@x). The integral measure
spherical coupling space foé=3 andp=4. The figure shows the dw(J) ensures that the total volume is normalized to 1.

existence of a “mirror cell” corresponding to the symmetry(aj In the thermodynamic limit we expect bothand f to
under the transformation)(o)—(—J,— o). become self-averaging, and we can therefore calculate the
mass exponents) by using the replica trick introducing
The relative cell sizeP(o)=V(0)/Z,V(7) gives the identical replicas numbereg=1, ... n to perform the av-
probability for generating the outpur for a given input erage over the quenched patterns. Moreover, we introduce a
sequence” with a coupling vectod drawn at random from  second replica indexx=1, ... g in order to represent the

a uniform distribution over the whole space of couplings.qth power ofP in Eq. (5) assuming as usual that the result
The natural scale of this quantity in the thermodynamic limitcan be meaningfully continued to real valuesoof13]. In-
is e=2"". For the Ising perceptron this corresponds to a celkroducing integral representations for the Heaviside function

containing just a single coupling vector. It is convenient towe arrive at a replicated partition function given by
characterize the cell sizes by teeowding indexa(o) de-

fined by
)= du(32®
P((T): 601(0')_ (3) << >> < <{§} gy /J’( )
y22
As discussed nicely in the Derrida part[6f, the storage and 1
generalization properties of the perceptron are coded in the % H 9< 02_2 J?,agf/,)
distribution of cell sizeslefined by maa JNT
f(a)=Ii > _ogS da—a(o)l. @ s (11 9
a)=IMy_ 0572500 a—alo)|. = d Ja,a)f
Nlog2 >4 ) wm( 0 faa 27
To calculate this quantity within the framework of statistical A
mechanics one uses the formal analogyf@f) with the X ; a,a| y aa
. . . ! . X H exp i E X A
microcanonical entropy of the spin systesmwith Hamil- wa,a 27T paa #

tonian a(o). It can hence be determined from the corre-

sponding free energy, _i a aa M)
| X \/NU”Ei Jaagl }>> 9
T(q)=—l|mNﬂng2<<log§U: exp(—qlogZa(a))>>

The average over the quenched pattéfhsan now be easily
. 1 done. To disentangle the remaining integrals we introduce
=- IImr\HoW92 |09§U: Pi(a) (5)  the order parameters

via Legendre transformation with respect to the inverse tem- aB_ 1 aa 1bp
peratureq, Qab_NEi N (10

fla)=mingLaq—r(q)]. ©) as the overlap of two coupling vectors, and their conjugates

This procedurd10] is very similar to the so-called thermo- Qg‘ﬁ. The spherical as well as the Ising constraints restrict
dynamic formalism in the theory of multifractald1,12 the self-overlapQss to 1. The other values of the order
where the multifractal spectruri{«) is introduced to char- parameter matrices are obviously invariant under simulta-
acterize a probability measure by the moments neous commutations @«—b and o« B. We then find
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Q Q Ill. THE SPHERICAL PERCEPTRON

n .
(«(Z")= j (@.0)2(b.8) 277/N A. Replica symmetry
A In the case of the spherical perceptron the coupling space
X exp[ N[ - > Q;’EQ;”?‘F ylogGo(Q;’f) is restricted to the\l—dimensional hypersphere de_fin_ed py the
(a,2)<(b.) global spherical constraint?=N. In the largeN limit this

R gives rise to the integral measure
+10gG1(Q5%) } (11
du(d)=]1 a4 S(N—J?) (14)
with H i V2we '
)\aa . . . . pay
Using the replica symmetriéinsatz(13) with Qy=Qy,=0
GolQaf) = j H \/_{é} leads to the mass exponent
X ex |2 xaa) aa a_ - 2 XaaXbBQag ' ( )__ iextr A E(Q _1)+ Q(q_l)Q Q
a,a 2a,b,a,ﬁ a Q)= |ogz Q1.Qq, 2 2 2 1~1
AL N 1 o A qg-1 A A
61(Qs)=| [ IT duc ~ Jogl 0y +(a- Q] - 1 og @, Q)
b 1N Q
X Qe Jaagbh q =
exp((a’a;(b’ﬁ) Qaybz aa ! ] +7I092j DtH ( 1_Q1t”, (15)
(12

where  we introduced the  abbreviations Dt
(a,a)<(b,B) denotes eithea<b ora=b,a<p and counts =dtexp(~t¥2)/y2= for the Gaussian measure and
the elements above the main diagonal in the order parameter(x)=[;Dt. As is well known for spherical models, the
matrices. The integrals over the order parameters iNEQ.  saddle-point equations for the conjugated order parameters

can be done using the saddle-point method. Aap - C
To find the correct saddle point is in general a very diffi—)(/?ie'l’dsCan be solved explicitly, which in the present case

cult task. A simpleAnsatzis the replica symmetric one. For
the present situation it is important to note that the output
sequences{ai} carry only one replica index. The typical (q)=—- —
overlap of two coupling vectors within one célame output log2
sequence{o‘;}) will hence in general be different from the q-1 Q;
typical overlap between two coupling vectors belonging to +Tlog(1—Ql)+ ylong Dth( = t”
different cells (different output sequenc{ar‘;}). Therefore Qi

we have to introduce already within the replica symmetric (16
(RS approximation two different overlap values in order to

determine the saddle point of E(L1) (see[7)): The order parameted, is self-consistently determined by
. the saddle-point equation
1 if (a,a)=(b,B)

Q=1 Qu if a=ba#p (13 Q
Q, if a#b. 1+(@-1)Q,

In accordance with the above discussi@q,then denotes the a2 5
typical overlapwithin one cell whereagQ, denotes the over- f DtH t
: : 1 Q1
lap between different cellsThe structure of the conjugated 2
order parameter is analogous, having nonunite diagonal ele- ™ )
mentsQ,. 1- Q1
Plugging this RSAnsatzinto Eq. (9) one realizes that (17)

Qo=Q0=0 always solves the saddle-point equations forrhe mufifractal spectruni(a) resulting from a numerical
Q, andQ,. This has an obvious physical interpretation: Duesolution of these equations is shown in Fig. 2 for various
to the symmetry of Eq(1) and therefore of the crowding loadingsy.

index a( o) under the transformation)(e)«— (—J,— @), ev- For small values ofy we find the typical bell-shaped form
ery cell has a “mirror cell” of the same size and shape onof f(a). The zerosam,(7y) specify the RS estimate of the
the “opposite side” of the coupling spacésee Fig. 1  largest cell occurring with nonzero probabilfty4].

Qo=0 simply reflects this symmetry. It can be explicitly =~ The most frequent cell size corresponds to the maximum
broken by introducing a threshold in E@l). Note that of f(«) and is therefore given byry(y)= argmaxf(a)).
Q0:QO:0 means formally that the quenched average oveFor largeN, cells of this size dominate the total number of
the input patterns can be performed asaanealedaverage. cells exponentially, i.e., a randomly chosemtput sequence

extrQ1 Iog[1+ (g—1)Q4]

DtH (
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Although the cells with volumey, are the most frequent
ones, their joint contribution to the totablumeof the sphere
is negligible. Since

1=, P(a)=jwdaexr{N[f(a)—a]} (18)

o 0

a saddle-point argument reveals that the cells with size
a4(y) defined byf’(a;)=1 dominate the volume. Cells of
larger size are too rare, those more frequent are too small to
compete. Consequently a randomly chosenpling vector
J will belong with probability 1 to a cell of sizex;. By the
definition (2) of the cells all other couplings of this cell will
give the same output for all patterg4. Thereforee®1(?) is
nothing but the volume of the version space of a teacher
a perceptron chosen at random from a uniform probability dis-
tribution on the sphere of possible perceptrons. Frohorit
FIG. 2. Multifractal spectruni(«) characterizing the cell struc- equ!val_ently fromQ,(q= 1’7_)] one can d.et.e”“'”e the gen-
ture of the coupling space of the spherical perceptron for variou@ral'zat_'on error as a function of the training set sizee-
values of the loading parameter0.2,0.35,0.5,1.0,2.Grom leftto  Producing the results dfL5].
right). The curves end at their maxima because of the divergence of Th€ main properties of the perceptron can hence be de-
the mass exponen{(q) for negativeq (corresponding to the dotted fived from the multifractal spectrunfi(«) of the cell size
party. Replica symmetry holds between the diamonds and thdlistribution in the coupling space. Below we show that the
maxima. RS Ansatztogether with the assumptio@,=0 gives valid
results for G=q=<1.
There is also a close formal analogy between the calcula-
o will be found with probability 1 in a cell of size,. Hence  tion of f(«) and the standard Gardner approach wjtplay-
e [cf. Eq.(3)] is thetypical volume of couplings realiz- ing the role of the replica number in the Gardner calculation.
ing p=yN random input-output mappings as determinedSince from Eq.(6) we haveq=df/de, the calculation of
within a standard Gardner calculatipti]. This volume be- «q is related toq—0, whereas the generalization problem
comes zero, i.eqq(y)—o~, for y—2 (cf. Fig. 1) in accor- ~ concentrating orx; corresponds t@—1. These limits of
dance with the Gardner resiilt]. the replica number in Gardner calculations are well known to
In addition we can infer fronf(ag(y)) the typical num-  correspond to the storage and generalization problems, re-
ber of cells as first calculated with the help of geometrical Spectively[16].
methods by Covef4]. For small loading ratiogy we find
f(ag)=1, i.e., all 2N possible cellgor almost all of them
do indeed occur. The storage problem for thesealues is
then solvable with probability 1. Fory>2 we have
f(ag) =f()<y implying that only an exponentially small The results of the preceding paragraph were obtained
fraction of all possible cells can be realized. It is then typi-within the RS approximation and usir@,=0. The discus-
cally impossible to find couplings realizing a randomly gen-sion of their validity requires a careful determination of the
erated set of input-output mappings. The multifractal analy-stability of theseAnsdze for the different values of;. We
sis of the coupling space hence nicely reconciles thdirst discuss the stability with respect to longitudinal fluctua-
previously complementary approaches to the storage proltions in Q, i.e., we search for a RS saddle-point solution
lem of the perceptron by Cover and Gardner, respectivelywhere the symmetry giving rise 1Q,=0 is spontaneously
From both the analysis afy(y) and off(ag(y)) one finds broken. The full replica symmetric saddle-point equations
the well-known resuliz,=2. are of the form

B. Longitudinal instability of replica symmetry

— 2 2
f Dt(He - H‘i‘l)exp{ —(JQ_O);lV_Q(; )Qot)
1

f Dt(HY +HY)

0 Qo 4 J' Dy

“1TQ-10:1-Qo  27(1-Qy) - 19
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VQoy+ Q1 —Qqt)?
J Dt(H‘12+Hq2)exp{—( ° L <0
0= Q1—Qo N Qo(1—Qy) Y f Dy (1-Qy) 20
T 1+(q-1)Q;— 1+(q—1)Q;— Qo> 2w '
(9=1)Q1=Qo [1+(0—1)Q1~ Qo] ™ f Dt(HT + HY)
|
where Ql,Ql for q<0 reveals that the multifractal formalism in
the present form is unfortunately also unable to determine
Ho—nl = \/Q_OY+ VQ1—Qot 21) dyc since the divergence of negative moments/¢&) oc-
= - ‘/1—Q1 ' curs forall values ofy. The pattern average performed in

Eq. (5) does not allow one to decide whether the observed
Linearizing these equations @, we find that new solutions divergence ofr is due to the fact thay>d,,c/N or is due to

Qo>0 bifurcate continuously fronQ,=0 at exceptional pattern realizations that give rise to empty cells
also if y<dyc/N [20]. Note in this connection also that
N similar divergences in the theory of multifractdlgl] are
g.=1+ . (22 ; ;
Qi(y) related to cells with volume that is nonzero but decreases for

N— o quickerthan exponentially. For the perceptron, on the

From Egs.(22) and(17) the two transition points|..(y) for  other hand, it is known that empty cells exist for all values of
positive and negative inverse temperatgreean be deter- N [4].
mined explicitly. In the rangg_<q<q, , there exists only
the solution withQy= 0, which becomes unstable at the tran- _ . : .
sition points. D. Transversal instability of replica symmetry and percolation

In addition to the longitudinal instabilities discussed in the
C. Divergence of negative moments preceding paragraph there is the possibility of a transversal
instability invalidating the RSAnsatz[22] which we study
now. The replica symmetriénsatz(13) is formally similar
to a one-step replica symmetry broken solutidRSB of
standard replica calculatiori47]. It is advantageous to use

The expressiol(l5) for the replica symmetric mass expo-
nent has been calculated for positive integehe continu-
ation to negative values af gives rise to divergences at

1+(q—-1)Q the results and the notation given[28]. After some lengthy
- 1 —xly (23)  calculations we arrive at four different eigenvalues corre-
1-Q sponding to the replicon modes denoted (by1,1), (1,2,2,

as can be realized from an asymptotic analysis of the inte(—o’z’a’ and(0.2,1 in [23]. We give here only the result for

grand in the last term of Eq(15). Because ofH(t) the (0,1, mode which is found to be the first to become
5 . unstable,

xexp(—t?2)/\2xt for larget we get an exponential part of

this term proportional to exp{ét?/2) and the whole integral 1_(1/7,)(q_1)2Q§

converges only if6>0. For 6—0 we therefore find that N(0,1,D)= 1+ (=10,

tends to—«. The global minimum of Eq(15) with respect q !

to Q, is hence no longer given by the saddle point described

by Egs.(16) and(17), which realizes only a local minimum It vanishes exactly at the two points calculated in E2R)

with respect toQ;. There is hence discontinuoudongitu-  describing the instability with respect to longitudin@l,

dinal transition atg=0 with Q; jumping from the solution fluctuations. Similar to the SK modg24] in zero field the

of Eqg. (17) to 1/(1—q). As a consequencé(a) is not de- longitudinal and transversal instability of the RS solution

fined for f'(a@)<0 and the curves fof(«) as obtained occurs hence for the same temperatuig [R5]. Due to the

above by using the saddle-point equations are reliable onlgdivergences foig<<0 only q. is of further relevance. The

for q=0, i.e., for positive slope. The parts corresponding toAT points are therefore determined lay, (), which are

g<0 are dotted in Fig. 2. marked in Fig. 2 by the diamonds.

It is tempting to speculate that the observed divergence The eigenvalua(0,1,1) describes fluctuations in that part
for negative q is due to the existence oémpty cells of the overlap matrix having only, entries, i.e., corre-
V(o)=0 in Eq. (5). In the theory of neural network@nd  sponding to the overlaps between different cells. This is rea-
more generally of classifier systenihe possibility of output sonable since for the spherical perceptron the cells them-
sequences impossible to implement by the system is relatesklves are known to be convex. No RSB is hence expected to
to the Vapnik-Chervonenkid/C) dimensiond,,: of the class be necessary to describe the structure sihglecell [1]. The
of networks under consideratidi8,19. It has been notori- instability to RSB found above concerns the distribution of
ously difficult to determine the VC dimension of a neural overlaps between different cells which must now be charac-
network from statistical mechanics calculations since theerized by two parameters. The smaller one remains equal to
definition of the VC dimension involvessupremunover all  zero reflecting still the symmetry of E¢l). The other one is
possible pattern sets rather than theeragefeaturing in Eq.  larger than zero and describes the formation of clusters made
(5). The above analysis of the instability with respect toof cells of identical size.

(24)
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In order to interpret the RSB transition in physical termswith
we allude again to the analogy with the SK model. There the e
analogous instability corresponds to broken ergodicity, i.e., aByy— * aa X
to the fact that not all parts of the phase space can be reachegso«Qab)) % 0 g d g 2
from a given initial condition. In the perceptron problem

single spin flips in the output sequenoeare equivalent to . aay aw a__ E aaybBapB
hops between neighboring cells in the coupling space. The xex '% XN 26%,; XX Qab
breakdown ofQy,=0 atq, hence signals that starting in a

cell of a size corresponding ®, , i.e., starting with a spin (27)

configurationo with energy «(o) corresponding tay, it and

becomes impossible to reach the “mirror cell” by hops us-

ing only cells of the same or larger sizes, i.e., via spin con- 5 ap 1 5 B 1aa 1bp

figurations o with the same or smaller energy. Since the Gl((Qab)):% eXp g 2 QapJ?“" . (29
relative number of larger cells is exponentially small we can J (a7 (08)

interpret the observed breaking of RS ageacolation tran-  Contrary to the spherical case, the conjugated parameters

sition in the infinite dimen?ic))nal space'of couplings. FOr a8 cannot be eliminated analytically. The replica symmet-
0<g<g. the cells of size*% percolate in coupling space ric expressions are obtained by introducing the saddle-point
in the sense that they can all be reached from each other by, cture (13) for both the overlaps and their conjugates.

g nly el of e seme e . el aing ega it he siog, -0 we et o the
9 mass exponent

other.
1 qQ,
m(q)= Tog2 extrg, 0, 5 [1+(a-1)Q4]
IV. THE ISING PERCEPTRON
A. Replica symmetry _|ng Dtcoslﬁ‘(JQlt)
In the Ising perceptron the entries of the coupling vector
are restricted td;==*1,i=1, ... N, the full coupling space Q;
is hence given by the™corners of arN-dimensional hyper- — ylog 2f DtHA 1—Q1t : (29

cube. The cells are therefore represented by discrete sets,

their probability measure is given by the number of elementshe extremization in this equation is again somewhat subtle
multiplied with 2. Thus, the coupling space measure is to[9]. There are two, qualitatively different possibilitie§)

be modified according to The first one is given b@; =1 andQ, = and hence lies at
the boundary of allowed values of the saddle-point param-
j du(d)y—2"N> . (25) eters. It can be studied analytically and leads to
J 7(q)=qg—1. The corresponding multifractal spectrum is
given by a single poinf=a=1. No dependence of re-
mains. The valuew=1 describes cells containing just a
single coupling vector in accordance wifh = 1. Their total
1 1 R number is of orde ™ f=2N, and hence they form a macro-
7(q)=q+ Iimnﬁom extr(Q;t/)s),(Qg@( > > 2£Qaf  scopic part of the cell number as well as of the total coupling
9 (aa)#(bg) space volume. Since the total number of cells 1, 2this
R solution can exist fory=1 only. (ii) The second solution
—logG1((Qef)— 7'09(30((Q§€))) (26)  solves the saddle-point equations

Following the general procedure described in the Sec. Il w
arrive at

J DtcosW*Z(\/Q—lt)sini‘F( \/Q—lt)
f DtcosH‘(\/Q_lt)

_(1+Q1)t2] q—Z( Q: )
y f‘“ex"[ 2(1-qp | " 1-Q,

le
2m(1—
m(1-Qu) thHq( \/fgt)
1

Q.=

(30
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1.0 : : ThereforeN is related to the size of the typical cell and from
7 Egs.(8) and(25) one findss=(1— ag)log2. Hences=0 is
. equivalent toay=1.

. Similarly the generalization behavior of the Ising percep-
tron differs from that of the spherical one. There is a well-
known discontinuous transition to perfect generalizatiah
L ¥9=1.245[27]. It shows up in the multifractal spectrum

f(a,y) as the point where1(y,) =1 with @, again defined

by f'(a;)=1. At this value of the loading parameter the
discontinuous transition tQ,;=1 occurs and the coupling
space becomes dominated by cells with exactly one element.
This is the intuitive reason for the transition to perfect gen-
eralization; there is only one coupling vector left that per-
forms perfectly on the training set: the teacher herself.

0.0

B. Continuous replica symmetry breaking and percolation

1.0
a » Similar to Sec. I, we have analyzed the longitudinal and
transversal stability of the RS solution wi(@o=Qo=0 by
FIG. 3. Multifractal spectrunf(«) describing the cell structure calculating the relevant eigenvalues of the fluctuation matrix.
of the coupling space of the Ising perceptron with loading ratiosThe results are qualitatively the same. Using the linearization
y=0.2,0.4,0.833,1.245,1.érom left to righy. The curves end at of the complete replica symmetric saddle point equations at
their maxima due to the divergence of the mass exponggt for Qo:Qozo we find again a new solution Wit@o,Qo>O

e'emerging continuously at the two valugs satisfying

Vy=+01(9-—1)(1-Q[1+(g-—1)Q;]. (32

The analysis of the transversal fluctuations reveals that the
first mode to become unstable is again the replicon mode
(0,1,7. Due to the existence of two order parameter matrices
the analysis is now more involved. Following the argumen-
tation in[1], we first determine the eigenvalues in the two
building blocks of the fluctuation matrix and find for the
(0,1,1) eigenvalue of the overlap fluctuations

triangle denotes the discontinuous transitioto= 1. The isolated
point (1,1) is marked by the square.

It lies inside the intervals for the parameters and is to be
determined numerically. It exists for aj if y<1 and dis-
appears for fixedy>1 at a sufficiently negative.

A numerical comparison of the corresponding local
maxima or minima ofr leads to the following scenario: For
y<1 solution (ii) always gives the global extremum. For
v>1 this is only the case fag>qgs{ ). At this threshold
the extremunii) becomes the global one by a discontinuous
transition. The occurrence of such transitions is the trade- . 2 22
mark of neural networks with Ising coupling26,9]. The NU0,1,0=-y Ha-DA(1-Qu*Qi, (33
smooth curves of («) then terminate and are completed by
a single point at1,1) (see Fig. 3. Hence fory>1 the spec-
trum is nonzero only in a certain regi@fn< @< ema< 1 ©) __ _ 2
and at the isolated point at=1. ANEOLD=~[1H(a- DR (39

The general form of the multifractal spectrum resemblesrhe total fluctuation matrix for this replicon mode is then
that of the spherical perceptron. In fact, fgr=0.25 the  gjyen py
curves almost coincide. This was to be expected because the
cells are still relatively large and do not “sense” the dis- ()\<Q>(0,1,j) 1

and for the conjugated matrix

creteness of the Ising couplings. For largerhowever, it
becomes decisive that in the Ising perceptron the cell sizes
are restricted taw<<1. All valuesa>1 correspond to empty
cells.

The storage capacity is therefore not givendyy—~ as

1 7\@(0,1,1) (39

and the breakdown of RS is signaled by a change of the sign
of its determinant. From Eq$33), (34), and (35 we find

. . : . hat the local transversal instability occurs again at the same
in the case of the spherical perceptron but is determined b aluesq. (7) given by Eq.(32), for which the RS solution

ao(y)= argmaxf(«,y))=1. As can be seen from Fig. 3, " A L
this holds fory.=0.833 the well known result obtained in With Qo=Qo=0 becomes longitudinally unstable. _
[26]. In fact, ao(y) =1 is equivalent to the zero-entropy con- !N Fig. 3 the breakdown of the local stability of RS is

dition frequently used for neural networks with discrete cou-29ain marked by the diamonds. Inside the interval
plings. Let us define the entropy (a(94),ap), RS is locally stable. As discussed already for

the spherical case, in this region the solutions are symmetric
) 1 under the reflection symmetry of the original systéthand
SZ"mNawN«'OW)' 3D the cells of every fixed crowding indexe (a(q. ), @) per-
colate in coupling space. Outside this interval the overlaps
where NV denotes the number of couplings that can imple-between different cells must again be described by twro
ment a mapping betweepN random inputsand outputs. more order parameters. The smaller one vanishes, and still
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reflects the symmetry of Eq1). The other one takes a value IRS 1 rd @

in (0,Q;) with Q; being the overlap within one single cell TR q) = extr, Q(l— e S(E) : (37)

and describes the size of the connected clusters remaining

below the percolation threshold. where we have used the RS mass exponéfitfrom Eq.
(29). The saddle-point equation with respectrtois then

) . given by
C. Divergence of negative moments
For q<0 there occurs an analogous divergencer dbr B dmS( q _ Rs
small § defined by Eq(23) as in the spherical case, which 1= dg |m o (38)

gives rise to a similar discontinuous transition with respect to

Q;. As aresult, thé (a) curves do not continue into regions Comparing the values of?° and 7*RSB one finds that for

of negative slope foany y. It is hence again impossible to >0.833 there is indeed discontinuous transitiorto this
infer the (still unknown [28]) VC dimension of the Ising 1RSB solution whemr gets larger than 1. Crossing this point
perceptron from the multifractal analysis. Note that the onlyr(q) becomes proportional tg, implying thatf(«) stops at
value that could in principle be obtained from a statisticalo=1. This removes the inconsistency noted above. For
mechanics analysis is what is called tiypical VC dimen-  0.833< y< 1.245 the cells contributing most to the total vol-
sion that gives the maximal pattern set size for whighi-  yme (the @, cells contain exponentially many couplings.
cally no empty cells occuf29]. Numerical investigations The majority of cells, however, comprise only subexponen-

suggest that this value is equal g2 [30,29. tially many couplings. This situation is correctly described
by the 1RSB solution witl@Q,<1 characterizing the:; cells
D. Discontinuous replica symmetry breaking andQ,=1 characterizing the typical ones. With increasing

Contrary to the case of the spherical perceptron, there i¥» the a1 cells shrink and the typical cells disappear. At
an inconsistency even within the region lotal stability of ~ ¥=1:245, we havex;=1 and correspondinglf@,=1. At
the RSAnsatz For 0.833< y<1.245 the multifractal spec- thiS point7 is again given by theninimumin Eq. (26) since
trum f(a) continues to values:>1 corresponding to the g>1. Therefore the 1RSB solution has to be rejected and the

unphysical region of cells having less than one but more thaﬁlscontlnu_ous_ transition disappears. The 1RSB solution also
zero elements. ec”omes mtnnspally inconsistent since there is “no room
We therefore expect a discontinuous transition to RSEEf” for a Qz with Q,<Qp<1. For y>1.245 the 1RSB
already in the region of local stability of RS. Due to the fact solution fln.ds its natural continuation in the RS solution with
that a single cell is not necessarily connected for the Ising21= 1, Which gives rise to the gap in tH¢«) spectrum as
perceptron, this transition is likely to take place inside thediscussed in the first paragraph of this section.
blocks describing the overlapsgithin a cell The global re-
flection symmetry remains unbroken and therefore the typi- E. Numerical results
cal overlaps between two cells stay zero. W? can he_nce cal- For the Ising perceptron the phase space is discrete and
culate the annealed averagZ)) of the partition function.  ihe gnalytical results discussed above can be checked by nu-
After a standard calculation we find the following one-steparical enumerations over all the possiblé @upling vec-
RSB (1RSB result for the mass exponent: tors J;=*1. Although these techniques are naturally con-
fined to rather low values oN, it is interesting to see
Eq(q—m)Q o) whether the asymptotic behavior already shows up in small
2 Tt samples. We have performed enumerations for valugs of
between 10 and 30 according to the following prescription.

1
1RS — P
T B(q)_ |092 EXtrmleszlesz

9 _ _ We first generat@ patterns at random from a Gaussian dis-
+2Q2[1+(m DQz] Iogf bz tribution with zero mean and unit variance. As in related
a/m studies[31,6] we choose Gaussian patterns because they
X f Dz,cosH( \/Q_lzl+ VO, - 0,2, show less pronounced finite size fluctuations. Next we use
the GRAY code[32] to run through all coupling vectoksand
determine the corresponding output strings. Finally we deter-
- 7IogZJ' Dtlf Dt,H™ mine the size of the cells by counting the multiplicity of the
occurring outputs and compile a histogram of cell siz?/% ina
B —o. )\ ]em double logarithmic scale. The results are averaged over 10
x( YQiti @, Ql)l , (36)  (for N=10) to 10(for N=30) realizations of the random
V1-Q; patterns. Although the main reason for the lesser number of

realizations used for largll was limited computer time, it
, o ) became quite clear in the simulations that the sample-to-
whereQ, is the order par_ameter _|nS|de thex m d_lagonal sample fluctuations for large are due to self-averaging sub-
blocks of the overlap matrix an@, is the entry outside these o ntia|ly smaller than for smaM. The results of the enu-
blocks.Q;  are the corresponding conjugated quantities. Amerations together with the corresponding analytical results
similar expression was obtained [i81]. already displayed in Fig. 3 are shown in Fig. 4. It is at first
Guided by previous experien¢26], we look for an ex-  surprising that the histograms lie always above the analytical
tremum withQ,=1 andQ,=«. One then finds curves. However, for smaly we have
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o

FIG. 4. Exact enumeration results for the multifractal spectii(aa) of the Ising perceptron fop=6N=30; p=12N=30; and
p=20N=24 (from left to right. The dotted lines are the analytical results of Fig. 3y#fer0.2, 0.4, and 0.833, respectively. The inset shows
a finite size scaling fof () at y=0.5. The diamonds are enumeration results whereas the line is given byOEwith |f”(a,)| estimated
from the numerical data. The rms fluctuations of the enumeration results are smaller than the symbol size. The asymptotic value for

f(ayg) is 0.5.
257’\':fldaZNf(“)zsz(“0>fldaex N|ong"(a )(a— ag)? zszWo)\/—zw (39
0 0 2 0 0 Nlog2|f"(ao)|
|
giving rise to onstrated that the most important part of the multifractal

spectrum can be determined within an annealed calculation

1 Nlog2|f"(ag)] with respect to the input pattern distribution. This is not only
fag) =+ SN o 40 an important technical advantage but may also smooth the

way for mathematically rigorous investigations of these

Hence the maximum of the histograms for firlteconverges ~ Problems.

to the asymptotic valué(ay) =y for N—c from above. In Replica symmetry must be broken if one aims at describ-
fact, in the inset of Fig. 4 we have compared the finite sizdng comparatively large and therefore rare cells. Despite the
scaling predicted by Eq40) with enumeration results for symmetry of the coupling space under point reflection at the

f(ag) at y=0.5. The agreement is very good. origin, these cells no longer percolate in the sense that it is
impossible to reach the corresponding “mirror” cell without
V. SUMMARY entering cells of smaller size. This clustering of large cells is

described by the higher order parameters of a solution with
In this paper, we have presented a multifractal analysis obroken replica symmetry.
the coupling space of the single-layer perceptron with con- Finally we note that the central procedure in our calcula-
tinuous and Ising couplings. This has been done by charagions is the determination gfositive integemomentsv9 of
terizing the random partition of the coupling space into dif-the distribution of phase space volumes and the continuation
ferent cells corresponding to different output sequences ogf the result to realy [13]. In doing so we encountered di-
the same fixed set of random input vectors. This picture a'Vergences for alg<0. These are probably due to the exis-

lowed us to refine the standard Gardner analysis and, mores . empty celly=0. We therefore hope that an appro-

over, to unify the different approaches to the_: storage prObIerBriately modified formalism describing the metastable state
of Gardne{1] and Cove{4] and the generalization problem that occurs forg<<0 might be able to yield also results for
within one consistent picture. The different questions are re:

lated to different fractal subsets of the coupling space: Théhe VC dimension of neural networks.
cells with the most frequent size describe the storage prob-
lem, those dominating the total volume are related to the
generalization ability for a randomly drawn teacher. ACKNOWLEDGMENTS
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